2023年成考高起点每日一练《数学(理)》8月26日专为备考2023年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、已知直线l:3x-2y-5=0,圆C:,则C上到l的距离为1的点共有()
- A:1个
- B:2个
- C:3个
- D:4个
答 案:D
解 析:由题可知圆的圆心为(1,-1),半径为2 ,圆心到直线的距离为,即直线过圆心,因此圆C上到直线的距离为1的点共有4个.
2、设双曲线的渐近线的斜率为k,则|k|=()
- A:
- B:
- C:
- D:
答 案:D
解 析:双曲线渐近线的斜率为k故本题中k
3、函数的定义域是()
- A:{x|-3<x<-1}
- B:{x|x<-3或x>-1}
- C:{x|1<x<3}
- D:{x|x<1或x>3}
答 案:D
解 析:由对数函数的性质可知,解得x>3或x<1,因此函数的定义域为{x|x<1或x>3}
4、函数的反函数是()
- A:
- B:
- C:
- D:
答 案:A
解 析:,由于x≤0,故
把x与y互换,得所求反函数为
主观题
1、已知数列的前n项和
求证:
是等差数列,并求公差和首项。
答 案:
2、建筑一个容积为8000,深为6m的长方体蓄水池,池壁每
的造价为15元,池底每
的造价为30元。(I)把总造价y(元)表示为长x(m)的函数;(Ⅱ)求函数的定义域
答 案:
3、在正四棱柱ABCD-A'B'C'D'中,
(Ⅰ)写出向量
关于基底{a,b,c}的分解式
(Ⅱ)求证:
(Ⅲ)求证:
答 案:(Ⅰ)由题意知(如图所示)
(Ⅱ)
(Ⅲ)
由已知,a,c是正四棱柱的棱,a,b,c两两垂直
4、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为,准线为
由题意得l的方程为
因此l与C的准线的交点坐标为
(II)由
,得
设A(x1,y1),B(x2,y2),则
因此
填空题
1、函数的图像与坐标轴的交点共有()
答 案:2
解 析:当x=0时,y=-2=-1,故函数与y轴交于(0,-1)点,令y=0,则有
故函数与x轴交于(1,0) 点,因此函数
与坐标轴的交点共有 2个.
2、lg(tan43°tan45°tan47°)=()
答 案:0
解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0
精彩评论