2023年成考高起点每日一练《数学(理)》8月27日专为备考2023年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、圆的圆心在()点上
- A:(1,-2)
- B:(0,5)
- C:(5,5)
- D:(0,0)
答 案:A
解 析:因为所以圆的圆心为O(1,-2)
2、袋中有6个球,其中4个红球,2个白球,从中随机取出2个球,则其中恰有1个红球的概率为()
- A:
- B:
- C:
- D:
答 案:A
解 析:
3、直线3x-4y-9=0与圆(θ为参数)的位置关系是
- A:相交但直线不过圆心
- B:相交但直线通过圆心
- C:相切
- D:相离
答 案:A
解 析:方法一: 圆心O(0,0),r=2,则圆心O到直线的距离为
0
4、设函数,则f(x+1)=()
- A:x2+2x+1
- B:x2+2x
- C:x2+1
- D:x2
答 案:B
解 析:
主观题
1、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为,准线为
由题意得l的方程为
因此l与C的准线的交点坐标为
(II)由
,得
设A(x1,y1),B(x2,y2),则
因此
2、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得当
时,f'(x)
单调递减,在区间
单调递增.因此f(x)在
时取得极小值
3、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.
答 案:由已知得解得
4、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得AB=120m,求河的宽
答 案:如图,
∵∠C=180°-30°-75°=75°
∴△ABC为等腰三角形,则AC=AB=120m
过C做CD⊥AB,则由Rt△ACD可求得CD=
=60m,
即河宽为60m
填空题
1、函数的图像与坐标轴的交点共有()
答 案:2
解 析:当x=0时,y=-2=-1,故函数与y轴交于(0,-1)点,令y=0,则有
故函数与x轴交于(1,0) 点,因此函数
与坐标轴的交点共有 2个.
2、的展开式是()
答 案:
解 析:
精彩评论