313职教网:包含各种考证等职教知识

网站首页

您的位置:首页 学历类成考高起点 → 2023年08月27日成考高起点每日一练《数学(理)》

2023年08月27日成考高起点每日一练《数学(理)》

2023/08/27 作者:匿名 来源:本站整理

2023年成考高起点每日一练《数学(理)》8月27日专为备考2023年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、圆的圆心在()点上  

  • A:(1,-2)
  • B:(0,5)
  • C:(5,5)
  • D:(0,0)

答 案:A

解 析:因为所以圆的圆心为O(1,-2)

2、袋中有6个球,其中4个红球,2个白球,从中随机取出2个球,则其中恰有1个红球的概率为()

  • A:
  • B:
  • C:
  • D:

答 案:A

解 析:

3、直线3x-4y-9=0与圆(θ为参数)的位置关系是

  • A:相交但直线不过圆心
  • B:相交但直线通过圆心
  • C:相切
  • D:相离

答 案:A

解 析:方法一: 圆心O(0,0),r=2,则圆心O到直线的距离为 0

4、设函数,则f(x+1)=()

  • A:x2+2x+1
  • B:x2+2x
  • C:x2+1
  • D:x2

答 案:B

解 析:

主观题

1、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由,得设A(x1,y1),B(x2,y2),则因此

2、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.

答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得时,f'(x)时,f'(x)>O.故f(x)在区间单调递减,在区间单调递增.因此f(x)在时取得极小值

3、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.

答 案:由已知得解得

4、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得AB=120m,求河的宽

答 案:如图, ∵∠C=180°-30°-75°=75° ∴△ABC为等腰三角形,则AC=AB=120m 过C做CD⊥AB,则由Rt△ACD可求得CD==60m, 即河宽为60m  

填空题

1、函数的图像与坐标轴的交点共有()  

答 案:2

解 析:当x=0时,y=-2=-1,故函数与y轴交于(0,-1)点,令y=0,则有故函数与x轴交于(1,0) 点,因此函数 与坐标轴的交点共有 2个.

2、的展开式是()

答 案:

解 析:

网友评论

0
发表评论

您的评论需要经过审核才能显示

精彩评论

最新评论