2023年成考高起点每日一练《数学(文史)》8月28日专为备考2023年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、函数的定义域是()
- A:{x|-3≤x≤-1}
- B:{x|x≤-3或x≥-1}
- C:{x|1≤x≤3}
- D:{x|x≤1或x≥3}
答 案:D
解 析:由题可知x2-4x+3≥0,解得x≥3或x≤1,故函数的定义域为{x|x≤1或x≥3}.
2、如果点(2,一4)在一个反比例函数的图像上,那么下列四个点中也在该图像上的是()
- A:(一2,4)
- B:(一4,一2)
- C:(一2,一4)
- D:(2,4)
答 案:A
解 析:设反比例函数为,点(2,-4)在反比例函数的图像上,因此有
,解得k=-8,故反比例函数
,当x=-2时,y=4,故选A在该图像上.
3、()
- A:8
- B:14
- C:12
- D:10
答 案:B
解 析:
4、函数的图像与直线y=4的交点坐标为()
- A:(0,4)
- B:(4,64)
- C:(1,4)
- D:(4,16)
答 案:C
解 析:令y=4x=4,解得x=1,故所求交点为(1,4).
主观题
1、在△ABC中,B=120°,C=30°,BC=4,求△ABC的面积.
答 案:因为A= 180°-B-C=30°,所以AB = BC=4.因此△ABC的面积
2、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.
答 案:(I)因为,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.
f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为
3、已知等差数列前n项和
(Ⅰ)求通项
的表达式
(Ⅱ)求
的值
答 案:(Ⅰ)当n=1时,由得
也满足上式,故
=1-4n(n≥1)
(Ⅱ)由于数列
是首项为
公差为d=-4的等差数列,所以
是首项为
公差为d=-8,项数为13的等差数列,于是由等差数列前n项和公式得:
4、已知三角形的一个内角是,面积是
周长是20,求各边的长.
答 案:设三角形三边分别为a,b,c,∠A=60°,
填空题
1、点(4,5)关于直线y=x的对称点的坐标为()
答 案:(5,4)
解 析:点(4,5)关于直线y=x的对称点为(5,4).
2、已知向量a=(3,2),b=(-4,x),且a⊥b,则x=()
答 案:6
解 析:∵a⊥b, ∴3×(-4)+2x=0 ∴x=6.
精彩评论