2023年成考高起点每日一练《数学(理)》9月28日专为备考2023年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、已知全集U=R,A={x|x≥1},B={x|-1
- A:{x|x≤2}
- B:{x|x<2}
- C:{x|-1
- D:{x|-1
- D:{x|-1
答 案:A
解 析:补集运算应明确知道是否包括端点.A在U中的补集是x<1,
2、已知向量a=(3,4),向量 b=(0,-2),则cos的值为()
- A:
- B:
- C:
- D:
答 案:B
解 析:求cos可直接用公式cos a·b=(3,4)·(0,-2)=3×0+4×(-2)=8,
3、对满足a>b的任意两个非零实数,下列不等式成立的是()
- A:
- B:
- C:
- D:
答 案:D
解 析:A错误,例如-2>4,而 B错误,例如:-10>100,而
C错误,例如:-1>-2,而
4、参数方程(
为参数)表示的图形为()
- A:直线
- B:圆
- C:椭圆
- D:双曲线
答 案:B
解 析:即半径为1的圆,圆心在原点
主观题
1、已知等差数列前n项和
(Ⅰ)求这个数列的通项公式;(Ⅱ)求数列第六项到第十项的和
答 案:
2、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得当
时,f'(x)
单调递减,在区间
单调递增.因此f(x)在
时取得极小值
3、某工厂每月生产x台游戏机的收入为R(x)=+130x-206(百元),成本函数为C(x)=50x+100(百元),当每月生产多少台时,获利润最大?最大利润为多少?
答 案:利润 =收入-成本, L(x)=R(x)-C(x)=+130x-206-(50x+100)=
+80x-306
法一:用二次函数
当a<0时有最大值
是开口向下的抛物线,有最大值
法二:用导数来求解
因为x=90是函数在定义域内唯一驻点
所以x=90是函数的极大值点,也是函数的最大值点,其最大值为L(90)=3294
4、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.
答 案:由已知得解得
填空题
1、lg(tan43°tan45°tan47°)=()
答 案:0
解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0
2、函数的图像与坐标轴的交点共有()
答 案:2
解 析:当x=0时,y=-2=-1,故函数与y轴交于(0,-1)点,令y=0,则有
故函数与x轴交于(1,0) 点,因此函数
与坐标轴的交点共有 2个.
精彩评论