2023年成考高起点每日一练《数学(理)》10月7日专为备考2023年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、函数的定义域是()
- A:{x|-3<x<-1}
- B:{x|x<-3或x>-1}
- C:{x|1<x<3}
- D:{x|x<1或x>3}
答 案:D
解 析:由对数函数的性质可知,解得x>3或x<1,因此函数的定义域为{x|x<1或x>3}
2、在△ABC中,已知2B= A+C,= ac,则B-A=()
- A:0
- B:
- C:
- D:
答 案:A
解 析:在△ABC中,A+B+C=π,A+C=π-B,① 因为2B=A+C,②
由①②得2B=π-B,
由③④得
a=c。所以A=C,又
所以△ABC为等边三角形,则B-A=0
3、已知全集U=R,A={x|x≥1},B={x|-1
- A:{x|x≤2}
- B:{x|x<2}
- C:{x|-1
- D:{x|-1
- D:{x|-1
答 案:A
解 析:补集运算应明确知道是否包括端点.A在U中的补集是x<1,
4、已知向量a=(3,4),向量 b=(0,-2),则cos的值为()
- A:
- B:
- C:
- D:
答 案:B
解 析:求cos可直接用公式cos a·b=(3,4)·(0,-2)=3×0+4×(-2)=8,
主观题
1、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得当
时,f'(x)
单调递减,在区间
单调递增.因此f(x)在
时取得极小值
2、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.
答 案:由已知得解得
3、已知等差数列前n项和
(Ⅰ)求这个数列的通项公式;(Ⅱ)求数列第六项到第十项的和
答 案:
4、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为,准线为
由题意得l的方程为
因此l与C的准线的交点坐标为
(II)由
,得
设A(x1,y1),B(x2,y2),则
因此
填空题
1、的展开式是()
答 案:
解 析:
2、若平面向量a=(x,1),b=(1,-2),且a//b,则x=()
答 案:
解 析:由于a//b,故
精彩评论