313职教网:包含各种考证等职教知识

网站首页

您的位置:首页 学历类成考高起点 → 2023年10月13日成考高起点每日一练《数学(理)》

2023年10月13日成考高起点每日一练《数学(理)》

2023/10/13 作者:匿名 来源:本站整理

2023年成考高起点每日一练《数学(理)》10月13日专为备考2023年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、在△ABC中,已知2B= A+C,= ac,则B-A=()  

  • A:0
  • B:
  • C:
  • D:

答 案:A

解 析:在△ABC中,A+B+C=π,A+C=π-B,① 因为2B=A+C,② 由①②得2B=π-B, 由③④得a=c。所以A=C,又所以△ABC为等边三角形,则B-A=0  

2、从点M(x,3)向圆作切线,切线的最小值等于()  

  • A:4
  • B:
  • C:5
  • D:

答 案:B

解 析:如图,相切是直线与圆的位置关系中的一种,此题利用圆心坐标、半径,求出切线长. 由圆的方程知,圆心为B(-2,-2),半径为1,设切点为A, 由勾股定理得, 当x+2=0时,MA取最小值,最小值为  

3、设函数,则f(x+1)=()

  • A:x2+2x+1
  • B:x2+2x
  • C:x2+1
  • D:x2

答 案:B

解 析:

4、方程的图像是下图中的()  

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:本题属于读图题型,在寻求答案时,要着重讨论方程的表达式  

主观题

1、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.

答 案:由已知得解得

2、已知数列的前n项和 求证:是等差数列,并求公差和首项。  

答 案:  

3、在△ABC中,B=120°,BC=4,△ABC的面积为,求AC.

答 案:由△ABC的面积为所以AB =4.因此所以

4、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量关于基底{a,b,c}的分解式; (Ⅱ)求证: (Ⅲ)求证:  

答 案:(Ⅰ)由题意知(如图所示)  

填空题

1、若平面向量a=(x,1),b=(1,-2),且a//b,则x=()  

答 案:

解 析:由于a//b,故

2、椭圆的中心在原点,一个顶点和一个焦点分别是直线x+3y-6与两坐标轴的交点,则此椭圆的标准方程为()  

答 案:

解 析:原直线方程可化为交点(6,0),(0,2). 当点(6,0)是椭圆一个焦点,点(0,2) 是椭圆一个顶点时,c=6,b=2,当点(0,2) 是椭圆一个焦点,(6,0) 是椭圆一个顶点时,c=2,b-6,

网友评论

0
发表评论

您的评论需要经过审核才能显示

精彩评论

最新评论