313职教网:包含各种考证等职教知识

网站首页

您的位置:首页 学历类成考高起点 → 2023年10月22日成考高起点每日一练《数学(理)》

2023年10月22日成考高起点每日一练《数学(理)》

2023/10/22 作者:匿名 来源:本站整理

2023年成考高起点每日一练《数学(理)》10月22日专为备考2023年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、已知直线l:3x-2y-5=0,圆C:,则C上到l的距离为1的点共有()

  • A:1个
  • B:2个
  • C:3个
  • D:4个

答 案:D

解 析:由题可知圆的圆心为(1,-1),半径为2 ,圆心到直线的距离为,即直线过圆心,因此圆C上到直线的距离为1的点共有4个.

2、设函数,则f(x+1)=()

  • A:x2+2x+1
  • B:x2+2x
  • C:x2+1
  • D:x2

答 案:B

解 析:

3、设A、B、C是三个随机事件,用A、B、C的运算关系()表示事件:B、C都发生,而A不发生  

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:选项A,表示A或B发生或C不发生,选项C,表示A不发生或B、C不发生.选项D,表示A发生且 B、C 不发生.

4、在△ABC中,若b=,c=则a等于()

  • A:2
  • B:
  • C:
  • D:无解

答 案:B

解 析:此题是已知两边和其中一边的对角,解三角形时,会出现一解、两解、无解的情况,要注意这一点.用余弦定理可得解出

主观题

1、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由,得设A(x1,y1),B(x2,y2),则因此

2、已知数列的前n项和 求证:是等差数列,并求公差和首项。  

答 案:  

3、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.

答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得时,f'(x)时,f'(x)>O.故f(x)在区间单调递减,在区间单调递增.因此f(x)在时取得极小值

4、已知等差数列前n项和 (Ⅰ)求这个数列的通项公式;(Ⅱ)求数列第六项到第十项的和

答 案:  

填空题

1、函数的图像与坐标轴的交点共有()  

答 案:2

解 析:当x=0时,y=-2=-1,故函数与y轴交于(0,-1)点,令y=0,则有故函数与x轴交于(1,0) 点,因此函数 与坐标轴的交点共有 2个.

2、长方体的长、宽、高分别为2,3,6,则该长方体的对角线长为()

答 案:7

解 析:由题可知长方体的底面的对角线长为,则在由高、底面对角线、长方体的对角线组成的三角形中,长方体的对角线长为

分享:

网友评论

0
发表评论

您的评论需要经过审核才能显示



盖楼回复X

(您的评论需要经过审核才能显示)